Europhotonics : Questions in Quantum Optics

. Demonstrate the identity :

[4,BC| = |4,B|C+B[A,.C] (1)
. Use the identity of eq. (1) to evaluate the following expressions : (Rappel : N, = a}ag and [ag,aﬂ =1),

A, [a, V]

B. [a}, J%]

C. [a afasal]

For the following questions, let us consider the special (but common case) where [ﬁ, E} # 0 but we still have the
condition that :

(4[4.5]) o= [B.[4.5]] o
. Under the condition of eq. (2), demonstrate the identity :
[ﬁ,ﬁn} — pAr-! [E,E} . (3)
. Use the identity derived in eq. (3) to show that :
[E,e_‘&”} — _geAv [E,E} . (4)
. Use the identity eq. (4) to derive the following expression :
eArBe=A = B _ o [E,E} . (5)

. Let us define the operator, 6(33) = eA7eBe_ Calculate the derivative : %, and use the expression of eq. (5) to show
that :

a0 [/~ = ~ S\ A
—:(A+B+x[A,BDO. (6)
dx

. Since [;1\, E} commutes with both A and E, we can solve eq. (6) with the usual solution to differential equations

methodology. In this manner, derive the relation (known as the disentangling theorem) :

BA\GB _ ngrEJr%[A,E] ) (7)

. Let us consider the following harmonic oscillator state (or alternatively a monomode electromagnetic state) :
W) = = {10) + [4)} Q
=% .

A. Calculate 7 = (¥| N|W¥) = (¥|ala|w).
B. Calculate n? = (U] N2|W).

C. Calculate An = \/n2 —n2 .



10.

11.

12.

13.

Let us continue to consider monomode radiation state. The quadrature operators of the mode are :

fia af
Xl—ﬁ( + ) o)
X:L(afzﬁ)

NG

For the vacuum state of the monomode state, |0), and the quadrature operators , X, and X, given in eq. (9) :
A. Calculate (X;), = (0] X;]0), for i = 1,2.
B. Calculate (X7), = (0| X7|0), for i = 1,2.

C. Calculate AX; = /(X2), — (X;)2 for i = 1,2.

Let us now consider a monomode photon state, |¥), which is a superposition of the vacuum, |0) and a 1-photon state,
|1). We can then adopt the ‘qubit’ notation for this state and write an arbitrary superposition as :

|¥) = cos(0/2)|0) + €' sin(0/2)|1) . (10)

where 0 € [0,7] and ¢ € [0,27] . N.b. the states |0) and |1) are related by the usual ‘ladder’ operators af|0) = |1),
all) = 10).

For the state |¥) of eq. (10) :
A. Calculate (X;)y = (V| X;|¥), for i =1,2
. Calculate (X?2), = (U] X2|V¥), for i = 1,2.

B

C. Calculate AX;(6,¢) = 1/ (X2), — (X,)5 for i =1,2.

D. Calculate AX1AX5 as a function of § (and an arbitrary value of ¢ since AX;AXs is ¢ independent as you
can verify), and plot AX;AXs as a function of § € {0,360}. Are the Heisenberg uncertanties satisfied ?
Explain the behavior of this plot.

E. Calculate AX;(0,¢) and AX5(60,¢) as functions of § for ¢ = 0 and ¢ = 7/2 with § € {0,360}. Can
AX; (6, ¢) have values inferior to those found for the vacuum state in the previous question ? Explain the
significance of this.

For the the following questions, let us recall that an arbitrary monomode photon state, |¢)), can be written as a
superposition of number states (Fock states), |n) :

)= Cunln) . (11)
n=0

The quasi-classical state (Glauber state/ coherent state) is given by the superposition :

la) = e~lol’/2 nz::O NG n) . (12)

Demonstrate that |«) is an eigenstate of the operator a.

Demonstrate that one cannot construct an eigenstates of the operator a'. In other words, if a|3) = 3|3) then |3) is
the null vector, i.e. |8) = 0 (not to be confused with the vacuum state, |0))

For a coherent state,|a).
A. Calculate the average number of photons : @ = (n) = (a|afa|a).
B. Calculate (X;), = (o] Xj|a) pour i = 1,2.
C. Calculate (X?) = (o X7|a), fori=1,2.

D. Calculate AX; = \/(X2), — (X;)2 for i =1,2.
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14.

15.

16.

17.

(1) "\ (4)

3|,

FIGURE 1 — Beam splitter transforming an input representation, |¥); o into an output representation |¥)s 4.

For the following questions, let us consider a beamsplitter with an input state, |¥), expressed either in the basis of
entry channels |¥), , or in the basis of output channels |¥), , :
One can interpret the beamsplitter as acting on the destruction operators in the following manner :

as = ra; + tas ay = tay +ras ,

where r and ¢ are the complex valued reflection and transmission coefficients of the beamsplitter (obtained either
by measurement or an electromagnetic optics calculation) :

El\3 T t Zil o El\l
=6 AR -e) )
where [S] is called the S-matrix. In the case of a lossless beamsplitter, the S-matrix must be a unitary matrix, i.e.

ST.S=8.8"=1. (14)

Show that the lossless condition of eq. (14) requires the ‘obvious’ energy conservation relations :

P2+ [t =1 (15a)
P22 =1 (15b)

Interpret the significance of these relations in terms of beam power (intensity).

Show that the lossless condition of eq. (14) also requires the ‘less obvious’ energy conservation relations :

r*t+t*r' =0 (16a)
tr +tr'"* =0. (16b)

Explain why these ‘two’ conditions are in fact only a single condition on the complex coefficients.

For a beam splitter that is mirror symmetric with respect to a plane at the center of the beam splitter’s diagonal,
often called a symmetric beam splitter, one has r = r’. For this symmetric case, what do the relations of eq. (16)
have to say about the phase relations between the coefficients r and ¢ ? (Hint : write r = |r|e’®" and t = [t|e’®t, and
determine the relation between ¢, and ¢; imposed by eq. (16).

Which of the following S-matrices are physically acceptable for a lossless beam splitter 7

A [S] = Wt o real-valued p and t with p? +12 = 1.
[t ip
B. [9] = : _tr] for r and t real-valued with r2 +¢2 = 1.
C. [9]= P~ "1 for p and 7 real-valued with p? + 72 = 1.
—iT p
D. [S] = Z:_ ZTT} for r and 7 real-valued with 72 4+ 72 = 1 for p and 7 real with r? + 72 =1
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18.

19.

20.

21.

22.

23.

24.

25.

Given the S-matrix relation of eq. (13), and the results of previous questions, show that transformation of the creation

operators is :
= ] -wf] (17)

Let us consider the state [n); with n photons in channel 1. Express |n); in terms of @l and the vacuum state of
channel 1, |0);

A ) = = (af)" o

B. Inh = -t (1) on
C. nyy = vl ()"0}

Express |¥) = |n)1 ® |m)s = |n,m)1 5 in terms of @l and @} acting the vacuum of the 2 channels |0, 0). Note that the
vacuum state doesn’t depend on the chosen basis. (more than one correct response possible)

A W) = ZA—a{"al™0,0)
B. [¥) = —2—a{"al"|0,0)
C. |w) = A=ai"al"|0,0)

A beamsplitter that is mirror symmetric with respect to its central plane can be written, with r and ¢ being complex

valued, and the energy conservation relations is :
r i
[S] = {t } : (18)

Express the state |U) = |n,m); 2 in terms of the creation operators in the output channels, ag and ajl for a beamplitter
described by the mirror symmetric beamsplitter of eq. (18).

A ) = A (- ral)” (ra)+eal) " 10,0)
B. |T) = \/W (r @b +t*a ) (t*aT—&—r*AT) |0,0)

C. |0) = A= (va} +eal)" (taf +ra})" J0,0)

Consider the state |¥) = |1, 0)1 2. Give the expression for this state in the base of the output channels.
A |¥) =1,0)12 = 7*[1,0)3.4 + t*]0,1)3 4
B. |¥) =1,0)1,2 =t*|1,0)54 + r*]0,1)3.4

C. |U) =11,0)12 =7[1,0)3.4 +t0,1)5.4

Consider the state, |¥) = |1,1)1 2, corresponding to exactly 1-photon in each entree mode channel on a mirror
symmetric beamsplitter. What is the correct expression for |¥) = |1,1); 2 in the output basis ?

A |O) = V27t)2,0)34 + [t +72] |1, 1)34 + V2¢r]0,2)34
B. [¥) = v2r*t*[2,0)34 + [(¢*)% + (r)2] |1, 13,4 + V2¢"77(0,2)5.4
C. |¥) = r*t*|2,0)5.4 + [(t*)% + (r*)?] [1,1)3,4 + t*77]0,2)3.4

Let us continue with the preceding question with the state |¥) = |1,1) o correspondmg to exactly a photon in each
entry channel. Consider now a symmetric 50/50 beamsplitter with r = \% and t = 7 What is the probability to
detect precisely 1 photon in each output mode channel ? (This is the famous Hong-Ou-Mandel effect)

A. 0

B. 1/3

C. 1/4

D. 1

Consider a partially silvered beam splitter described by the S-matrix in 17.B with r = ¢ = —=. Demonstrate that

beam splitter.

o

this beam splitter generates the same coalesced 2-photon states as obtained with the symmetri

o
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