
Europhotonics : Questions in Quantum Optics
1. Demonstrate the identity : [

Â, B̂Ĉ
]
=

[
Â, B̂

]
Ĉ + B̂

[
Â, Ĉ

]
(1)

2. Use the identity of eq. (1) to evaluate the following expressions : (Rappel : N̂ℓ = â†ℓ âℓ and
[
âℓ, â

†
ℓ

]
= 1 ),

A.
[
âℓ, N̂ℓ

]
B.

[
â†ℓ, N̂ℓ

]
C.

[
âℓ, â

†
ℓ âℓâ

†
ℓ

]

For the following questions, let us consider the special (but common case) where
[
Â, B̂

]
̸= 0 but we still have the

condition that : [
Â,

[
Â, B̂

]]
= 0 =

[
B̂,

[
Â, B̂

]]
. (2)

3. Under the condition of eq. (2), demonstrate the identity :[
B̂, Ân

]
= nÂn−1

[
B̂, Â

]
. (3)

4. Use the identity derived in eq. (3) to show that :[
B̂, e−Âx

]
= −xe−Âx

[
B̂, Â

]
. (4)

5. Use the identity eq. (4) to derive the following expression :

eÂxB̂e−Âx = B̂ − x
[
B̂, Â

]
. (5)

6. Let us define the operator, Ô(x) ≡ eÂxeB̂x. Calculate the derivative : dÔ
dx , and use the expression of eq. (5) to show

that :

dÔ

dx
=

(
Â+ B̂ + x

[
Â, B̂

])
Ô . (6)

7. Since
[
Â, B̂

]
commutes with both Â and B̂, we can solve eq. (6) with the usual solution to differential equations

methodology. In this manner, derive the relation (known as the disentangling theorem) :

eÂeB̂ = eÂ+B̂+ 1
2 [Â,B̂] . (7)

8. Let us consider the following harmonic oscillator state (or alternatively a monomode electromagnetic state) :

|Ψ⟩ = 1√
2
{|0⟩+ |4⟩} . (8)

A. Calculate n = ⟨Ψ| N̂ |Ψ⟩ = ⟨Ψ| â†â|Ψ⟩.
B. Calculate n2 = ⟨Ψ| N̂2|Ψ⟩.
C. Calculate ∆n ≡

√
n2 − n2 .



Let us continue to consider monomode radiation state. The quadrature operators of the mode are :

X1 =
1√
2

(
â+ â†

)
X2 =

1

i
√
2

(
â− â†

) (9)

9. For the vacuum state of the monomode state, |0⟩, and the quadrature operators , X1, and X2, given in eq. (9) :

A. Calculate ⟨Xi⟩0 = ⟨0|Xi|0⟩, for i = 1, 2.

B. Calculate
〈
X2

i

〉
0
= ⟨0|X2

i |0⟩, for i = 1, 2.

C. Calculate ∆Xi =
√

⟨X2
i ⟩0 − ⟨Xi⟩20 for i = 1, 2.

Let us now consider a monomode photon state, |Ψ⟩, which is a superposition of the vacuum, |0⟩ and a 1-photon state,
|1⟩. We can then adopt the ‘qubit’ notation for this state and write an arbitrary superposition as :

|Ψ⟩ = cos(θ/2)|0⟩+ eiϕ sin(θ/2)|1⟩ . (10)

where θ ∈ [0, π] and ϕ ∈ [0, 2π[ . N.b. the states |0⟩ and |1⟩ are related by the usual ‘ladder’ operators â†|0⟩ = |1⟩,
â|1⟩ = |0⟩.

10. For the state |Ψ⟩ of eq. (10) :
A. Calculate ⟨Xi⟩Ψ = ⟨Ψ|Xi|Ψ⟩, for i = 1, 2

B. Calculate
〈
X2

i

〉
Ψ
≡ ⟨Ψ|X2

i |Ψ⟩, for i = 1, 2.

C. Calculate ∆Xi(θ, ϕ) =
√

⟨X2
i ⟩0 − ⟨Xi⟩20 for i = 1, 2.

D. Calculate ∆X1∆X2 as a function of θ (and an arbitrary value of φ since ∆X1∆X2 is φ independent as you
can verify), and plot ∆X1∆X2 as a function of θ ∈ {0, 360}. Are the Heisenberg uncertanties satisfied ?
Explain the behavior of this plot.

E. Calculate ∆X1(θ, ϕ) and ∆X2(θ, ϕ) as functions of θ for ϕ = 0 and ϕ = π/2 with θ ∈ {0, 360}. Can
∆Xi(θ, ϕ) have values inferior to those found for the vacuum state in the previous question ? Explain the
significance of this.

For the the following questions, let us recall that an arbitrary monomode photon state, |ψ⟩, can be written as a
superposition of number states (Fock states), |n⟩ :

|ψ⟩ =
∞∑

n=0

Cn |n⟩ . (11)

The quasi-classical state (Glauber state/ coherent state) is given by the superposition :

|α⟩ ≡ e−|α|2/2
∞∑

n=0

αn

√
n!

|n⟩ . (12)

11. Demonstrate that |α⟩ is an eigenstate of the operator â.

12. Demonstrate that one cannot construct an eigenstates of the operator â†. In other words, if â†|β⟩ = β|β⟩ then |β⟩ is
the null vector, i.e. |β⟩ = 0 (not to be confused with the vacuum state, |0⟩)

13. For a coherent state,|α⟩.
A. Calculate the average number of photons : n = ⟨n̂⟩ ≡ ⟨α| â†â |α⟩.
B. Calculate ⟨Xi⟩α = ⟨α|Xi|α⟩ pour i = 1, 2.

C. Calculate
〈
X2

i

〉
α
≡ ⟨α|X2

i |α⟩, for i = 1, 2.

D. Calculate ∆Xi =
√
⟨X2

i ⟩α − ⟨Xi⟩2α for i = 1, 2.
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Figure 1 – Beam splitter transforming an input representation, |Ψ⟩1,2 into an output representation |Ψ⟩3,4.

For the following questions, let us consider a beamsplitter with an input state, |Ψ⟩, expressed either in the basis of
entry channels |Ψ⟩1,2 or in the basis of output channels |Ψ⟩3,4 :

One can interpret the beamsplitter as acting on the destruction operators in the following manner :

â3 = râ1 + tâ2 â4 = tâ1 + râ2 ,

where r and t are the complex valued reflection and transmission coefficients of the beamsplitter (obtained either
by measurement or an electromagnetic optics calculation) :[

â3
â4

]
=

[
r t
t r′

] [
â1
â2

]
= [S]

[
â1
â2

]
, (13)

where [S] is called the S-matrix. In the case of a lossless beamsplitter, the S-matrix must be a unitary matrix, i.e.

S†.S = S.S† = I . (14)

14. Show that the lossless condition of eq. (14) requires the ‘obvious’ energy conservation relations :

|r|2 + |t|2 = 1 (15a)

|r′|2 + |t|2 = 1 . (15b)

Interpret the significance of these relations in terms of beam power (intensity).

15. Show that the lossless condition of eq. (14) also requires the ‘less obvious’ energy conservation relations :

r∗t+ t∗r′ = 0 (16a)

t∗r + tr′,∗ = 0 . (16b)

Explain why these ‘two’ conditions are in fact only a single condition on the complex coefficients.

16. For a beam splitter that is mirror symmetric with respect to a plane at the center of the beam splitter’s diagonal,
often called a symmetric beam splitter, one has r = r′. For this symmetric case, what do the relations of eq. (16)
have to say about the phase relations between the coefficients r and t ? (Hint : write r = |r|eiϕr and t = |t|eiϕt , and
determine the relation between ϕr and ϕt imposed by eq. (16).

17. Which of the following S-matrices are physically acceptable for a lossless beam splitter ?

A. [S] =

[
iρ t
t iρ

]
for real-valued ρ and t with ρ2 + t2 = 1.

B. [S] =

[
r t
t −r

]
for r and t real-valued with r2 + t2 = 1.

C. [S] =

[
ρ iτ

−iτ ρ

]
for ρ and τ real-valued with ρ2 + τ2 = 1.

D. [S] =

[
r iτ
iτ r

]
for r and τ real-valued with r2 + τ2 = 1 for ρ and τ real with r2 + τ2 = 1
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18. Given the S-matrix relation of eq. (13), and the results of previous questions, show that transformation of the creation
operators is : [

â†3
â†4

]
=

[
r t
t r′

] [
â†1
â†2

]
= [S]

[
â†1
â†2

]
. (17)

19. Let us consider the state |n⟩1 with n photons in channel 1. Express |n⟩1 in terms of â†1 and the vacuum state of
channel 1, |0⟩1 :

A. |n⟩1 = 1√
n!

(
â†1

)n

|0⟩1

B. |n⟩1 = 1√
(n−1)!

(
â†1

)n

|0⟩1

C. |n⟩1 =
√
n!

(
â†1

)n

|0⟩1

20. Express |Ψ⟩ = |n⟩1 ⊗ |m⟩2 = |n,m⟩1,2 in terms of â†1 and â†2 acting the vacuum of the 2 channels |0, 0⟩. Note that the
vacuum state doesn’t depend on the chosen basis. (more than one correct response possible)

A. |Ψ⟩ = 1√
n!m!

â†n1 â†m2 |0, 0⟩

B. |Ψ⟩ = 1√
n!m!

â†m1 â†n2 |0, 0⟩

C. |Ψ⟩ = 1√
n!m!

â†m2 â†n1 |0, 0⟩

A beamsplitter that is mirror symmetric with respect to its central plane can be written, with r and t being complex

valued, and the energy conservation relations is :

[S] =

[
r t
t r

]
. (18)

21. Express the state |Ψ⟩ = |n,m⟩1,2 in terms of the creation operators in the output channels, â†3 and â
†
4 for a beamplitter

described by the mirror symmetric beamsplitter of eq. (18).

A. |Ψ⟩ = 1√
n!m!

(
r∗â†3 − t∗â†4

)n (
t∗â†3 + r∗â†4

)m

|0, 0⟩

B. |Ψ⟩ = 1√
n!m!

(
r∗â†3 + t∗â†4

)n (
t∗â†3 + r∗â†4

)m

|0, 0⟩

C. |Ψ⟩ = 1√
n!m!

(
râ†3 + tâ†4

)n (
tâ†3 + râ†4

)m

|0, 0⟩

22. Consider the state |Ψ⟩ = |1, 0⟩1,2. Give the expression for this state in the base of the output channels.

A. |Ψ⟩ = |1, 0⟩1,2 = r∗|1, 0⟩3,4 + t∗|0, 1⟩3,4
B. |Ψ⟩ = |1, 0⟩1,2 = t∗|1, 0⟩3,4 + r∗|0, 1⟩3,4
C. |Ψ⟩ = |1, 0⟩1,2 = r|1, 0⟩3,4 + t|0, 1⟩3,4

23. Consider the state, |Ψ⟩ = |1, 1⟩1,2, corresponding to exactly 1-photon in each entree mode channel on a mirror
symmetric beamsplitter. What is the correct expression for |Ψ⟩ = |1, 1⟩1,2 in the output basis ?

A. |Ψ⟩ =
√
2 rt|2, 0⟩3,4 +

[
t2 + r2

]
|1, 1⟩3,4 +

√
2 tr|0, 2⟩3,4

B. |Ψ⟩ =
√
2 r∗t∗|2, 0⟩3,4 +

[
(t∗)2 + (r∗)2

]
|1, 1⟩3,4 +

√
2 t∗r∗|0, 2⟩3,4

C. |Ψ⟩ = r∗t∗|2, 0⟩3,4 +
[
(t∗)2 + (r∗)2

]
|1, 1⟩3,4 + t∗r∗|0, 2⟩3,4

24. Let us continue with the preceding question with the state |Ψ⟩ = |1, 1⟩1,2 corresponding to exactly a photon in each
entry channel. Consider now a symmetric 50/50 beamsplitter with r = i√

2
and t = 1√

2
. What is the probability to

detect precisely 1 photon in each output mode channel ? (This is the famous Hong-Ou-Mandel effect)

A. 0

B. 1/3

C. 1/4

D. 1

25. Consider a partially silvered beam splitter described by the S-matrix in 17.B with r = t = 1√
2
. Demonstrate that

this beam splitter generates the same coalesced 2-photon states as obtained with the symmetric beam splitter.
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